July, 1946

The Synthesis of Some 7-Chloro-4-(3-alkylaminopropylamino)-quinolines¹

By D. S. TARBELL, NANCY SHAKESPEARE, C. J. CLAUS AND J. F. BUNNETT

This paper reports the synthesis of a series of 7-chloro-4-(3-alkylaminopropylamino)-quinolines, of structure I, for testing as antimalarials.

Investigation of this series was started when it was found that a metabolism product of 7-chloro-4-(3-diethylaminopropylamino)-quinoline (II) was probably the corresponding monoethyl compound I ($\mathbf{R} = \mathbf{C}_2\mathbf{H}_5$). This compound was prepared, and was found to have a considerable degree of activity in avian malarial infections, so that the synthesis of a series of homolog was deemed advisable.

The compounds were all prepared by condensing the appropriate diamine, $H_2NCH_2CH_2CH_2$ -NHR, with 4,7-dichloroquinoline; there is of course a possibility that the alkylation might have occurred on the secondary nitrogen, to give compounds of type III. A decision between structures I and III could be made by a Hizsberg test or

by a Van Slyke amino nitrogen determination, since III should give a mole of nitrogen; such a determination was not carried out for lack of time, but the experience of other chemists who have found that 4,7-dichloroquinoline will not condense with a secondary amine under similar conditions supports structure I. Dr. Lyman C. Craig of Rockefeller Institute has examined a sample of the ethyl compound ($R = C_2H_5$) by the countercurrent extraction procedure and reports less than 3% inhomogeneity.^{1a}

The diamines were prepared conveniently by the method of Holcomb and Hamilton, 2,3,4 which consists in addition of an amine to acrylonitrile, followed by catalytic reduction of the nitrile group.

$$RNH_{2} + CH_{2} = CHCN \longrightarrow RNHCH_{2}CH_{2}CN \xrightarrow{H_{2}}_{Ni}$$

$$IV$$

$$RNHCH_{2}CH_{2}CH_{2}NH_{2} \longrightarrow | CONHC_{6}H_{5}$$

$$V$$

This reaction has usually been applied to secondary amines, but Whitmore³ has made the compound from ethylamine, and there are a few scattered references in the patent literature to addition of primary amines to acrylonitrile, although the products are not well characterized.

The addition of the primary amines to acrylonitrile goes smoothly, without use of a catalyst, and our observations support Whitmore's statement that the addition is an equilibrium reaction. Even t-butylamine adds to acrylonitrile, although in somewhat lower yield than amines with a primary or secondary alkyl group; apparently the electron-repelling effect of the t-butyl group does not inactivate the hydrogens on the amino group enough to inhibit the addition reaction. This is the case, however, in the addition of alcohols to acrylonitrile to form β -alkoxypropionitriles; isopropyl alcohol gives poorer yields than primary alcohols⁵ and t-butyl alcohol does not add at all.⁶ The β -alkylaminopropionitriles IV were characterized by preparation of the phenylurea derivatives VI with phenyl isocyanate; these formed very readily in all cases except when R was tbutyl or cyclohexyl. In these cases, it was difficult to get a pure product with phenyl isocyanate, perhaps because of the readier dissociation of the nitrile IV into acrylonitrile and the primary amine and, since the usefulness of a derivative is slight unless it can be readily prepared, the reaction in these two cases was not pursued.

The reductions were carried out with Raney nickel at pressures of about 2500 lb. and at temperatures of 100–120°, using alcohol saturated with ammonia to repress the formation of secondary amine.^{3.7} The reduction is usually complete in about fifteen minutes and the yields are good. The diamines were characterized as dipicrates.

The reaction of the diamines with 4,7-dichloroquinoline proceeded with vigorous evolution of heat at about 150°. The quinoline bases I were frequently difficult to purify to a constant melting point, because they rapidly formed hydrates of varying composition. The monosulfates ob-

⁽¹⁾ The work described in this paper was done under a contractrecommended by the Committee on Medical Research, between the Office of Scientific Research and Development and the University of Rochester.

⁽¹a) Craig, private communication; J. Biol. Chem., 155, 519 (1944).

⁽²⁾ Holcomb and Hamilton, THIS JOURNAL, 64, 1309 (1942).

⁽³⁾ Whitmore, Mosher, Adams, Taylor, Chapin, Weisel and Yanko ibid., 66, 725 (1944).

^{(4) ,}Wiedeman and Montgomery, ibid., 67, 1994 (1945).

⁽⁵⁾ Utermohlen, ibid., 67, 1505 (1945).

⁽⁶⁾ Bruson, *ibid.*, **64**, 2457 (1942); Bruson and Riener, *ibid.*, **64**, 2850 (1942).

⁽⁷⁾ Schwoegler and A/lkins, ibid., 61, 3499 (1939).

TABLE I

β -Alkylaminopropionitrii.es, RNHCH ₂ CH ₂ CN									
R	Yiel4,	B. p.,	Mm.	<i>n</i> ²⁰ D	Formula	Carbon, % Calcd. Found		Hydro Caled.	gen, % Found
CH3 ^a	71	101–104 ^b	49	1.4320 ^b	$C_4H_8N_2$				
$C_2H_b^{a}$	84	97 - 98°	30	1.4333°	$C_5H_{10}N_2$				
$n-C_3H_7$	92	119 - 121	30	1.4362	$C_6H_{12}N_2$	64.22	64.13	10.80	10.71
$n-C_4I1_9$	98	$104 - 106^{d}$	10	1.4392	$C_7H_{14}N_2$	66.62	66.48	11.20	11.28
s-C4H9	83	92-96°	10	1.4379°	$C_7H_{14}N_2$	66.62	66.43°	11.20	11.32
t-C1H9	56	81-83	10	1.4329	$C_7H_{14}N_2$	66.62	66.60	11.20	11.37
C ₆ H ₁₁ , cyclohexyl	92	122-124'	4	1.4764	$C_9H_{16}N_2$	70.98	71.03	10.61	10.52

C₆H_{II}, cyclohexyl 92 122-124^{*I*} 4 1.4764 C₉H₁₆N₂ 70.98 71.03 10.61 10.52 ^a In the preparations of methyl- and ethylaminopropionitrile, 33% amine in water was used instead of the pure antine. After standing overnight, 150 g. of anhydrous potassium carbonate was added for every 180 g. of water present, and the mixture was shaken until all the solid had dissolved. The organic layer was then distilled to yield the desired product. ^b A. H. Cook and Reed, *J. Chem. Soc.*, 399 (1945), report b. p. 74° (16 mm.); n^{15} D 1.4342. ^c Whitmore, *et al.* (ref. 3), report b. p. 92-95° (30 mm.); n^{20} D 1.4318. ^d French Patent 742,358 (*C. A.*, 27, 3483 (1933)) reports a b. p. of 114-116° (20 mm.); German Patent 598,185 (*C. A.*, 28, 5474 (1934)) gives it as 114-116° (12 mm.). No other information is given. ^e A private cormunication from W. H. Jones, S. M. Nagy and Arthur C. Cope reports the foolwing: b. p. 95° (13.5 mm.); n^{25} D 1.4340; d^{28}_{25} 0.8688: mol. wt., calcd., 126.2; found (glass electrode titration), 124.6. ^f French Patent 742,358 (*C. A.*, 27, 3483 (1933)) reports b. p. 149-151° (11 mm.). The same value is given in German Patent 598,185 (*C. A.*, 28, 5474 (1934)).

tained from them also formed hydrates in some instances which held water extremely tenaciously; the sulfates gave titration curves corresponding to one mole of sulfuric acid per mole of base I.

TABLE II

PHENYLUREA DERIVATIVES, RNCH2CH2CN

CONHC₆H₅

			Carbo	on, %	Hydrogen, %		
R	М. р., "С,	Formula	Calcd.	Found	Calcd.	Found	
$C \Pi_3$	93.5-94.5	$C_{11}H_{13}N_3O$	65.00	64.91	0.45	6.54	
H-C3117	81.5-82	C13H11N3()	67.50	67.46	7.41	7.28	
i-Call7	126 - 126.5	C12H17N3O	67.50	68.02	7.41	7.39	
n-Calle	132.5 - 134	C14H19N2O	68.53	68.62	7.81	7.66	
s-Callo	127.5-128.5	C14H19N3O	68.53	68.54	7.81	7.70	

physical properties and analyses for the *n*-butyl compounds are given in the various tables. *n*-Butylaminopropionitrile ($IV, R = n-C_4H_9$).--Acrylo-

n-Butylaminopropionitrile (IV, $R = n \cdot C_4 H_9$).—Acrvlonitrile (24.2 g.) was added dropwise with stirring during ninety minutes to 50 g. of *n*-butylamine, the temperature being kept below 30° by a cold-water-bath. Stirring was continued for five hours after the addition was complete, the mixture was then refluxed on the steam-bath for ninety minutes and allowed to stand overnight. Vacuum distillation of the mixture yielded 55.4 g. (98%) of *n*-butylaminopropionitrile.

The phenylurea derivatives were best prepared by adding 1 cc. of phenyl isocyanate to 1 cc. of the nitrile dissolved in 10 cc. of petroleum ether; there was a vigorous reaction, and the product, if not crystalline immediately, became so on standing in the ice-box. The compounds were recrystallized from methanol-water or benzene-petroleum ether.

TABLE III

γ-ALKYLAMINOPROPYLAMINES, RN11C11₂C11₂C11₂N11₂

			Dipicrate						
					Carbon, %		Hydrogen, %		
R	В. р., °С.	n ²⁰ D	M. p., °C.	Formula	Caled.	Found	Caled.	Found	
CH3	138-141 ^a	1.4479	$224.5 - 226.5^{a}$						
C_2H_5	150-151 ^b	1.4455°	191–193 ⁶						
$n-C_3H_7^c$	169 - 174	1.4460	166.5 - 167.5	$C_{18}H_{22}N_8O_{14}$	37.63	37.48	3.86	3.89	
i-C ₂ H ₇			185 - 186.5	$C_{18}H_{22}N_8O_{14}$	37.63	37.93	3.86	3.73	
$n - C_4 H_9^d$	190-191	1.4490	150 - 151	$C_{19}H_{24}N_8O_{14}$	38.77	38.67	4.11	4.10	
s-C4H9	178-186*	1.4480*	165 - 166	C ₁₉ H ₂₄ N ₈ O ₁₄	38.77	38.63	4.11	4.18	
t-C4H9 ^f	170-173	1.4431	216 - 217	C19H24N8O14	38.77	38.87	4.11	3.80	
C ₆ H ₁₁ °, cyclohexyl	80 (0.5 mm.)	1.4820	182.5 - 183.5	$C_{21}H_{26}N_8O_{14}$	41.04	41.05	4.26	4.29	
	FO 050 (1005)		100 1008	· · · · · · · · · · · · · · · · · · ·	A 1171 1		- m -		

⁶ v. Braun, et al., Ber., **70**, 979 (1937), report b. p. 138–139°; m. p. of picrate 227°. ^b Whitmon. (aci 3) reports b. p. 156° (735 mm.); n^{10} D 1.4441; m. p. of picrate 193°. ^c Anal. of diamine: Calcd. for C₈H₁₆N₂: C, 62.01; H, 13.91. Found: C, 61.99; H, 13.81. ^d Anal. of diamine: Calcd. for C₇H₁₈N₂: C, 64.52; H, 13.95. Found: C, 64.61; H, 13.75. German Patent 598,185 (C. A., **28**, 5474 (1934)) reports b. p. 60° (1 mm.). ^e See footnote e, Table I. From the same source the following data are reported for this compound, stated to be probably slightly impure on the basis of analyses: d^{28}_{20} 0.8345. Calcd. for C₁H₁₈N₂: C, 64.52; H, 13.95. Found: C, 64.62; H, 13.93; mol. wt. (glass electrode titration), 130.8. ^f Anal. of diamine: Calcd. for C₇H₁₈N₂: C, 64.52; H, 13.95. Found: C, 64.62; H, 13.81. ^e Anal. of diamine: Calcd. for C₇H₁₈N₂: C, 64.52; H, 13.95. Pound: C, 64.62; H, 13.95. M, (glass electrode titration), 130.8. ^f Anal. of diamine: Calcd. for C₇H₁₈N₂: C, 64.52; H, 13.95. Found: C, 64.62; H, 13.81.

Experimental⁸

Experimental procedures were similar for all the compounds prepared, and are illustrated for the n-butyl series; γ -n-Butylaminopropylamine (V, R = n-C₄H₉).--n-Butylaminopropionitrile (40 g.) was reduced in 150 cc. of alcohol saturated with amnonia, using Raney nickel at 120° and 2500 lb. of hydrogen; the reduction was complete in about fifteen minutes. The catalyst was removed by filtration, most conveniently with the use of Super-Filtrol, and the alcohol fractionated through a Vigreux column; 27.2 g. (66%) of the reduction of the other minines ranged from about 55 to 70%. Analytical samples of the

⁽⁸⁾ All melting points corrected; analyses by Dr. Carl Tiedeke, by Lois E. May and William Saschek of Columbia University, and the Micro-Teef Laboratories. We are indebted to Drs. R. C. Elderfield and W. J. Gensler of Columbia University for assistance in obtaining materials, and to Raymond Hasson for technical assistance.

		TABLE IV					
			NHCH₂C	H ₂ CH ₂ NH	R		
7-Chloro-4-ali	KYLAMINOPROPYL/	AMINOQUINOLINES					
R	M. p., °C.	Formula	Carbe Calcil,	on, % Found	H yelro Caled.	gen, % Found	
CH_5^{-b}	88.5-90.5	$C_{13}H_{16}N_3CH_2O^{r}$	58.29	59.06	6.79	6.58	
C2115	80-83	$C_{14}H_{18}CIN_3 \cdot H_2O$	59.67	60.67	7.15	7.47	
$n-C_3\Pi_7$	101 - 102.5	$C_{15}H_{20}C1N_3$	64.87	64.78	7.27	7.43	
i-Call7	98-100	$C_{15}H_{20}C1N_{3}\cdot H_{2}O^{-t}$	60.89	60.93	7.51	7.47	
n-C4H9	100 - 103.5	C16H22C1N3	65.84	64.82	7.61	7.08	
s-C4H9	96.5 - 98	C16H22CIN2	65.84	64.50	7.61	7.13	
$t \cdot C_4 H_9$	153 - 154	$C_{16}H_{22}C1N_3$	65.84	65.94	7.61	7.34	
C ₆ H ₁₁ , cyclohexyl	109-112	C ₁₈ H ₂₄ CIN ₈	68.01	67.91	7.63	7.54	
	7-Chloro-4-All R CH_5^b C_2H_5 $n-C_3H_7$ $i-C_3H_7$ $n-C_4H_9$ $s-C_4H_9$ $i-C_4H_9$ $i-C_4H_9$ $i-C_4H_9$	R M. p., °C. CH_{5}^{b} S8.5-90.5 $C_{2}H_{5}$ S0-83 $n-C_{3}H_{7}$ 101-102.5 $i-C_{3}H_{7}$ 98-100 $n-C_{4}H_{9}$ 100-103.5 $s-C_{4}H_{9}$ 96.5-98 $i-C_{4}H_{9}$ 153-154 $C_{6}H_{11}$, cyclohexyl 109-112	TABLE IV 7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINES CI R M. p., °C. Formula CH ₅ ^b S8.5-90.5 C1al11 ₁₆ N ₃ Cl·H ₂ O ^a CH ₅ ^b S8.5-90.5 C1al11 ₁₆ N ₃ Cl·H ₂ O ^a C1 n-C3117 101-102.5 C16H20CIN ₃ n-C4119 100-103.5 C16H20CIN ₃ r-C4119 100-103.5 C16H20CIN ₃ r-C4119 1053-154 C16H22CIN ₃ r-C4119 153-154 C16H22CIN ₃ r-C4119 <td>TABLE IV NHCH2C 7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINES NHCH2C R M.p., °C. Formula Carbe R M.p., °C. Formula Carbe C11$_5$ 88.5-90.5 C1al116NaCl·H2O^a S8.29 C211$_5$ 80-83 C14H18ClN3·1H2O^a S9.67 M-C3H7 101-102.5 C16H20ClN3 64.87 i-C3H7 98-100 C18H20ClN3 64.87 i-C4H3 65.84 s-C4H9 98-100 C18H20ClN3·H2O^d 60.89 n-C4H9 100-103.5 C16H22ClN3 65.84 s-C4H9 96.5-98 C16H22ClN3 65.84 i-C4H9 96.5-98 C16H22ClN3 65.84 i-C4H9 109-112 C16H22ClN3 65.84 i-C4H9 i-C3H7 <</td> <td>TABLE IV NHCH₂CH₂CH₂NH: NHCH₂CH₂CH₂NH: R M. p., °C. Carbon, % Carbon, %<</td> <td>TABLE IV NHCH₂CH₂CH₂NHR 7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINES Carbon, $\%$ Hydro R M. p., °C. Formula Carbon, $\%$ Hydro CH₂^b S8.5-90.5 Cl₃H₁₆N₃Cl·H₂O^r S8.29 59.06 6.79 C₁₃H₅ 80-83 Cl₁₄H₁₆ClN₃·H₂O^r S8.29 59.06 6.79 C₂H₅ 80-83 Cl₁₄H₁₆ClN₃·H₂O 59.06 6.79 C₃H₇ 101-102.5 Cl₁₆H₂₀ClN₃·H₂O 59.67 60.67 7.15 n-C₃H₇ 101-102.5 Cl₁₆H₂₀ClN₃·H₂O^d 60.89 60.93 7.51 n-C₄H₉ 100-103.5 Cl₁₆H₂₂ClN₃* 65.84 64.82 7.61 s-C₄H₉ 96.5-98 Cl₁₆H₂₂ClN₃ <th colspan<="" td=""></th></td>	TABLE IV NHCH2C 7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINES NHCH2C R M.p., °C. Formula Carbe R M.p., °C. Formula Carbe C11 $_5$ 88.5-90.5 C1al116NaCl·H2O ^a S8.29 C211 $_5$ 80-83 C14H18ClN3·1H2O ^a S9.67 M-C3H7 101-102.5 C16H20ClN3 64.87 i-C3H7 98-100 C18H20ClN3 64.87 i-C4H3 65.84 s-C4H9 98-100 C18H20ClN3·H2O ^d 60.89 n-C4H9 100-103.5 C16H22ClN3 65.84 s-C4H9 96.5-98 C16H22ClN3 65.84 i-C4H9 96.5-98 C16H22ClN3 65.84 i-C4H9 109-112 C16H22ClN3 65.84 i-C4H9 i-C3H7 <	TABLE IV NHCH ₂ CH ₂ CH ₂ NH: NHCH ₂ CH ₂ CH ₂ NH: R M. p., °C. Carbon, % Carbon, %<	TABLE IV NHCH ₂ CH ₂ CH ₂ NHR 7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINES Carbon, $\%$ Hydro R M. p., °C. Formula Carbon, $\%$ Hydro CH ₂ ^b S8.5-90.5 Cl ₃ H ₁₆ N ₃ Cl·H ₂ O ^r S8.29 59.06 6.79 C ₁₃ H ₅ 80-83 Cl ₁₄ H ₁₆ ClN ₃ ·H ₂ O ^r S8.29 59.06 6.79 C ₂ H ₅ 80-83 Cl ₁₄ H ₁₆ ClN ₃ ·H ₂ O 59.06 6.79 C ₃ H ₇ 101-102.5 Cl ₁₆ H ₂₀ ClN ₃ ·H ₂ O 59.67 60.67 7.15 n-C ₃ H ₇ 101-102.5 Cl ₁₆ H ₂₀ ClN ₃ ·H ₂ O ^d 60.89 60.93 7.51 n-C ₄ H ₉ 100-103.5 Cl ₁₆ H ₂₂ ClN ₃ * 65.84 64.82 7.61 s-C ₄ H ₉ 96.5-98 Cl ₁₆ H ₂₂ ClN ₃ <th colspan<="" td=""></th>	

^a The Survey Number, designated SN, identifies a drug in the files of the Survey of Antimalarial Drugs. The activities of these drugs will be tabulated in a forthcoming monograph. ^b Temperature of oil-bath during coupling was 135°. ^c Neut. equiv., caled. for monolydrate, 140.9. Found: (from titration curve), 142.3. ^d The anhydrous drug and certain intermediates are described by D. E. Pearson, W. H. Jones and Arthur C. Cope, THIS JOURNAL, **68**, 1225 (1946). ^d Neut. equiv., caled.: 145.9. Found (from titration curve), 157.

TABLE V

7-CHLORO-4-ALKYLAMINOPROPYLAMINOQUINOLINE MONOSULFATES

		Molecula	r ^b weight		Carb	on, %	Hydrogen, %	
R	M. p., °C.ª	Caled,	Foun/l	Formula	Calcd.	Foun/l	Calcd.	Found
CH3	230 - 232	347.9	346.8	C ₁₃ H ₁₈ C1N ₃ O ₄ S	44.87	44.40	5.23	5.46
C ₂ H ₆	265 - 269	361.8	362.8	C14H20C1N3O4S	46.45	46.76	5.57	5.69
n-C3H7	271 - 274	375.8	371.2	$C_{15}H_{22}C1N_{3}O_{4}S$	47.94	47.75	5.91	6.05
<i>i</i> -C ₃ H ₇	265 - 270	375.8	376	$C_{15}H_{22}C1N_{3}O_{4}S$	47.94	48.08	5.91	6.01
n-C4H9	278 - 286	389.8	393.4	C16H24CIN3O4S	49.28	48.93	6.22	6.35
s-C₄H ₉	282 - 285	389.8	394.6	C ₁₆ H ₂₄ C1N ₃ O ₄ S	49.28	48.71	6.22	6.19
$t - C_4 1 1_9$	250 - 252	389.8	402.0	C ₁₆ H ₂₄ C1N ₃ O ₄ S	49.28	49.23	6.22	6.47
C6H11, cyclohexyl	310 - 315	416.0	229.0	$C_{18}H_{26}C1N_3O_4S$	51.97	52.16^{d}	6.31	6.57

^a All of the salts melt with decomposition. ^b Molecular weights obtained by doubling the neutral equivalent, obtained from a titration curve using a *p*H meter. ^c This value was obtained after drying fourteen hours *in vacuo* at 140°; a sample dried two hours at 61° gave C, 43.25? H, 5.67. The salt contains somewhat less than one molecule of water of crystallization; caled, water content of monohydrate: 4.9%; loss on drying to constant weight *in vacuo* at 140°; 3.2%. ⁴ Sample dried to constant weight at 140° *in vacuo*.

products of this and the preceding paragraph were obtained by fractionation in a small column under reduced pressure.

7-Chloro-4-(3-n-butylaminopropylamino)-quinoline (I, $R = n - C_4 H_9$). --n-Butylaminopropylamine (24.7 g.) and 17.8 g. of 4,7-dichloroquinoline were placed in a 250 cc. three-neck flask fitted with a condenser and a mercuryseal stirrer, and heated in an oil-bath at 155°. After about fifteen minutes, a vigorous exothermic reaction occurred and it was necessary to cool the flask quickly with an icebath. After the reaction had subsided, heating at 155° was continued for five hours. An excess of 6 N sodium hydroxide was added and a copious yellow precipitate formed. The mixture was steam distilled until the odor of amine was no longer detectable in the distillate. The solid material was removed and washed with water. It was then dissolved in hot acetone, treated with anhydrous sodium sulfate and norite, and filtered. The crystals which formed on cooling melted at 91-101°. Four recrystallizations from acetone yielded 13.4 g. (51.3%)of 7-chloro-4-(3-*n*-butylaminopropylamino)-quinoline, in. p. 100-103.5°.

The other quinoline bases were likewise purified by repeated recrystallizations from acetone, in which 4.7dichloroquinoline is very soluble; other solvents proved less useful.

7-Chloro-4-(3-*n*-butylaminopropylamino)-quinoline Monosulfate.—7-Chloro-4-(3-*n*-butylaminopropylamino)quinoline (21.7 g.) was dissolved in 100 cc. of absolute alcohol and 23 cc. of 6 N sulfuric acid was added with cooling, which formed a copious white precipitate of the monosulfate. Water (65 cc.) was added so that all the solid was in solution at the boiling point of the mixture. On cooling, the monosulfate was again precipitated. This was recrystallized four times from a mixture of 75 cc. of alcohol and 50 cc. of water. The purified compound was dried at 115° in an oven overnight and yielded 20.5 g. (72.7%) of the dry monosulfate.

The following are the ratios of alcohol: water used to recrystallize the various compounds: CH₃, 35:30; C₂H₅, 75:30; $n-C_3H_7$, 65:30; $i-C_3H_7$, 50:30; $s-C_4H_9$, 45:30; $t-C_4H_9$, 20:30.

Summary

A series of eight 7-chloro-4-(3-alkylaminopropylamino)-quinolines and their sulfates has been prepared for testing as antimalarial agents; the alkyl derivatives made were the methyl, ethyl, *n*and *i*-propyl, *n*-, *s*- and *t*-butyl, and cyclohexyl. The intermediates employed were the β -alkylaminopropionitriles, characterized as phenylurea derivatives, and the γ -alkylaminopropylamines, characterized by formation of the dipicrates. Most of the intermediates and the final compounds are new.

ROCHESTER, NEW YORK

RECEIVED APRIL 5, 1946